
Forking the Commons: Developmental Tensions

and Evolutionary Patterns
in Open Source Software

Mehmet Gençer and Bülent Özel

İstanbul Bilgi University, Turkey
{mgencer,bulent}@cs.bilgi.edu.tr

Abstract. Open source software (OSS) presents opportunities and chal-
lenges for developers to exploit its commons based licensing regime by
creating specializations of a software technology to address plurality of
goals and priorities. By ‘forking’ a new branch of development sepa-
rate from the main project, development diverges into a path in order to
relieve tensions related to specialization, which later encounters new ten-
sions. In this study, we first classify forces and patterns within this diver-
gence process. Such tensions may stem from a variety of sources including
internal power conflicts, emergence of new environmental niches such as
demand for specialized uses of same software, or differences along sta-
bility vs. development speed trade-off. We then present an evolutionary
model which combines divergence options available to resolve tensions,
and how further tensions emerge. In developing this model we attempt to
define open software evolution at the level of systems of software, rather
than at individual software project level.

Keywords: Forking, Divergence, Specialization, Software Evolution.

1 Introduction

Beginning with its popularity as a commercially viable form of software innova-
tion, open source development model has been often praised for its suitability for
evolution and adaptation to fast moving demands on software products. On the
other hand, understanding of software evolution in OSS research and practice
remains to be confined to its closed source counterpart. This traditional concep-
tualization, in turn, uses the term software evolution as a synonym for software
maintenance [8]. It acknowledges the environmental pressures on a single piece
of software, and primarily concerns unpredicted changes in software through its
life cycle.

This conceptualization is inadequate for systems of open source software. Un-
like closed source software, open source software packages are forked or com-
bined in a variety of ways. As such, environmental pressures and evolutionary
processes work through systems of software, rather than a single software. In the
face of openness, one needs a higher level unit of analysis to understand software
evolution.

I. Hammouda et al. (Eds.): OSS 2012, IFIP AICT 378, pp. 310–315, 2012.
c© IFIP International Federation for Information Processing 2012



Forking the Commons 311

In this paper, we develop a theoretical model for evolution of systems of open
software. We limit ourselves to cases of forking, re-forking, and occasionally,
merging of forked variants. In our model we identify environmental or internal
tensions on an OSS project, and patterns of consequent forking. Such forking
may create separate species which no longer may exchange -genetic- code with
one another (e.g. when fork uses a different, incompatible license, or is a result
of power conflict), or may be a variant which can share code with its parent or
sibling species (e.g. when fork is caused by stability/feature-richness trade-off).

Within this scope, we attempt to map essential elements of evolutionary
framework to software. We suggest that through such models a better under-
standing of software evolution within the contextual dynamics of broader soft-
ware ecosystem is possible, and can contribute to improve management and
resource allocation in a variety of cases where OSS model is employed.

In this paper, we present our mapping of evolutionary elements to software, in
the backdrop of existing literature. Summarizing empirical findings about forking
patterns in OSS, we propose a model of evolutionary processes and dynamics
around forking.

2 Software Evolution vs. Evolution in Software
Ecosystems

Darwinian framework for biological evolution have been employed in explain-
ing a variety of non-biological phenomena, primarily in economics. In doing so
one needs to map the principal processes of variation, selection and inheritance.
There is no random mutation in such social and economic systems but instead
there are rational actions of human (or organization) actors. Thus the overall
evolutionary analogy may be contested on the ground that variations are pur-
poseful unlike those in biology. However, rationality in such complex systems is
limited to information available to actors’ to predict outcomes of their actions
[6]. Complexity of outcomes in such systems make Darwinism particularly rele-
vant to understand them [7]. Such an evolutionary framework has been used to
explain economic and organizational systems [1].

In the field of software, the evolution concept has been used primarily through
variations of Lehman’s original conception [8], and almost interchangeably with
the term ‘software maintenance’ [5]. Such usage of evolutionary framework, al-
though weak, may be appropriate for proprietery software. On the other hand,
in the case of OSS, life cycles of software projects exhibit complex patterns in
which software packages are forked, merged, split, or combined in a variety of
ways, thanks to their permissive copyleft or copycenter licenses. Apart from case
studies on genealogy of certain OSS projects [5], however, attempts to analyze
evolution above the unit of single software projects are rare.

On the other hand open source software seems to be particularly suitable
for employing evolutionary framework. For any piece of software, creation and
employment of its copies can be considered as corresponding to replication in
biological evolution. What is different in OSS is the fact that many users mod-
ify it to fit their particular needs, thus mutating software. Depending on how



312 M. Gençer and B. Özel

common such a need is, some modifications find their way into the main devel-
opment branch of the software project. Such changes are replicated thereafter,
hence becoming part of the species’ gene pool. Certain others may correspond
to unique needs, and may never leave the single site they are created. More
interestingly there may be a variant which is demanded by a considerable user
base, but it may not be possible to converge the mutated software with the main
development stream for a variety of reasons (such as licensing, stability, target
platform, feature incompatibilities, or power conflicts with leadership). Such are
cases which correspond to creation of new species.

The brief articulation above lays out the parts of Darwinian analogy corre-
sponding to variation and inheritance processes. With the selection process, the
situation is even more similar to biological evolution. In OSS projects, even when
corporate actors are involved [3], a species’ access to resources in the environ-
ment corresponds to user and developer interest attracted to an OSS project. An
OSS software project develops and becomes more appealing to a larger user base
as developers prefer to contribute to it (rather than another software), unlike a
proprietary software whose development may depend on corporate investment.
Such developer support may depend on a variety of factors including appeal of
design choices by initiators. However, the major factor is how the functionality
provided by a new software corresponds to a niche need in the ecosystem, and
how it compares to alternatives. Given the complexity of such an ecosystem,
it seems plausible to assume that such correspondence (i.e. fitness in biological
evolution) is largely unpredictable.

3 The Open Source and Forking Patterns

Since open source software is based on a commons based property regime, anyone
can forgo to modify such a software technology for a special need. One way to
to do this is to extend software capabilities in desired direction. In this process,
which is called ‘forking’ in the open source community, a developer/group/firm
starts (forks) a branch of development work separate from the rest of collabo-
rators (the main branch). Such a fork faces an inherent paradox: (1) one may
disregard what is going on in the main branch entirely, thus reducing constraints
in terms of developing a capability, or (2) try to modify as few modules as possi-
ble to achieve the desired capability, using the rest of the modules from the main
branch. The latter method keeps immediate constraints but allows one to con-
tinue using –hopefully useful!– collaborative development of the main branch. In
many situations, one cannot evaluate and choose a subset of constraints before-
hand (at least not easily), hence facing a choice between staying interdependent
with others or going independent, with little or no shades of gray in between.

Current state of OSS licenses adds further complication to the matter. In con-
trast to a commercial license which was used to keep software innovation within
a proprietary sphere of a firm, open source licenses were designed to keep them
in public space. Thus first commercial firms who were interested in adaptability
and innovation advantages of OSS were faced with a dilemma between the power



Forking the Commons 313

of collaborative innovation on the one hand and keeping competitive advantage
on the other. Industry’s answer to the problem was creating a variety of hybrid
licenses (ie. copycenter licenses). While solving a range of competitive position-
ing problems, however, this introduced a new problem due to incompatibility of
licenses preventing code sharing among projects in many cases [2]. Thus license
incompatibilities enters OSS forking process as a potential complication.

In summary, independence and legitimacy ‘to fork’ under open source licensing
regimes accommodates innovation and agility because it allows diversification
to address tensions due to conflicting demands on development. It provides an
assurance for each collaborator that they can go their way when there is a conflict
of development goals.

In a previous study [4], we have observed various strategies based on forking, in
response to a variety of tensions. We have found two broad categories. First one,
interdependent forks, are the cases where the forked branch stays compatible with
the parent branch. Such forks were triggered by needs of further specialization,
differences in terms of stability/agility choices, etc. Further forks of the forks was
possible, each with varying degrees of compatibility and mutual empowerment
with other siblings. There were even cases of merging after a certain period of
separation. The second category, independent forks, included cases where the
fork became independent of the main branch. These were triggered by power
conflicts, license issues, etc. In most cases in the latter category, only one of the
branches survived.

New cases of forking has appeared since that study, some of which are more
public than others. Among those are, for example, the Android system for mo-
bile phones. Android forks the Linux kernel due to demanding requirements of
mobile platforms, such as power consumption and user interface. In its current
standing, the project have difficulties maintaining common code with the main
branch, which introduces the danger of many vendors maintaining multiple ver-
sions of their hardware drivers for two different systems. Another example was
the windowing system for Unix variants. Once dominant windowing system of
XFree86 have changed its licensing scheme. The new license were incompatible
with the copyleft licenses of many other software components in the Unix soft-
ware ecosystem, of which it was a part. As a result the OSS community has
created a fork named X Org, which soon became the dominant variant as the
community abandoned the former one.

These observed cases of software divergence through forking can be classified
as follows:

Variation - The fork creates two software variants which remain more or less
compatible with one another. In effect, they become variations within the same
species which retain advantage of code reuse or sharing. There are two major
groups in this category: (1) Forks due to specialization tensions : An example is
NetBSD fork of BSD Unix operating system. The fork was created to serve as
a specialized variant which provides features for networking and security. The
forked variants shared a large code base and kept empowering one another. (2)
Forks due to stability/agility tensions : An example is Debian/Ubuntu Linux fork.



314 M. Gençer and B. Özel

Ubuntu Linux was created to satisfy demands for using a feature rich Linux on
the desktop systems, where Debian’s focus was on stability and reliability. The
two projects shared a large set of utility programs as well as benefiting from
each others software package repositories.

Speciation -The fork creates two software species which are incompatible with
one another, or effectively unable to share code. There are two major groups in
this category: (1) Forks due to licensing tensions : An example is XFree86/XOrg
fork. The fork was created when XFree86 project has adopted a licensing scheme
which created a compatibility tension in the Unix ecosystem. The XOrg fork was
created due to this tension, which eventually replaced the former. (2) Forks due
to power conflicts within the leadership: An example is Emacs/Lucid Emacs fork.
Lucid, a private company, has forked Emacs editor, triggering a series of power
conflicts and trust issues with the original project’s team. The two projects were
not successful in aligning their efforts, hence went on their own way.

4 A Model of Divergence

Each fork, whether interdependent or independent, results from a tension. In
time it ignites a new round of tensions. Several patterns are suggested by our
previous study [3]. For example, in the case of GCC/EGCS fork, the fork was
created due to differences in terms of stability and flexibility. While the fork
served its purpose, the user community demanded the two projects to merge,
hence creating a new tension. In contrast, the case of Debian/Ubuntu fork faced
a different tension from its user base which valued usability promises of the
Ubuntu fork over backwards compatibility with its parent.

In each of the cases (except the forks due to personal power conflicts), a fork,
the consequent co-existence of two branches, and possible future mergers, seem
to encounter tensions related to conflicting demands of specialization (flexibility,
innovation speed, etc.) on the one hand and demands of compatibility (stability,
collaborative efficiency, etc.) on the other. Our model, visualized in Figure 1,
frames these observed patterns in a unified process.

The model visualization roughly corresponds to a timeline of events. An ex-
isting software community evaluates tensions regarding specialization, and a de-
cision emerges about whether to fork, and if so whether in an interdependent
or independent manner. In either case, but particularly interesting for us in the
case of a fork, the -forked- project will continue for a while, with tensions are
now relatively relaxed.

Survival of a forked branch faces several challenges such as being able to gen-
erate or sustain quality, keeping up attention of commercial or non-commercial
users. If the targeted specialization corresponds to a growing niche and delivers
the expected quality, it is likely that the project will survive and grow (in terms
of users, and in turn in terms of developer resources contributing to it). Such a
growth is likely to create new tensions of specialization. Depending on how the
parent project is growing, it may also face demands to merge with its parent as
well, since such a move will create certain advantages. However, if the fork was



Forking the Commons 315

Fig. 1. A model of open software divergence in the face of tensions between plural
interests/goals

an independent one (due to power conflicts, licensing differences, etc.) a merge
is less likely even if it is desirable.

In summary, each phase of evaluating tensions of specialization and its result
is effected by three factors: (1) how the fork is growing?, (2) how the parent or
siblings are growing, and (3) the type of fork. The growth of fork itself possibly
creates internal tensions for further specialization. The state of parent or sibling
projects on the other hand causes developers to weigh advantages of staying
separate versus advantages of merging with parent/siblings. Finally, the type
of fork (interdependent/independent) further constrains the options to resolve
tensions.

References

1. Aldrich, H.: Organizations Evolving. Sage (1999)
2. de Laat, P.B.: Copyright or copyleft?: An analysis of property regimes for software

development. Research Policy 34(10), 1511–1532 (2005)
3. Gencer, M., Oba, B.: Organising the digital commons: a case study on engagement

strategies in open source. Technology Analysis & Strategic Management 23(9), 969–
982 (2011)

4. Gencer, M., Ozel, B., Tunalioglu, V.S., Oba, B.: Forking: The gpl coherent technol-
ogy for flexible organizing in foss development. In: European Group of Organiza-
tional Studies Colloqium in Bergen, Norway (2006)

5. Godfrey, M., Tu, Q.: Evolution in open source software: a case study. In: Int. Conf.
on Software Maintenance, pp. 131–142 (2000)

6. Hayek, F.A.: The use of knowledge in society. The American Economic Review 35(4),
519–530 (1945)

7. Hodgson, G.M., Knudsen, T.: Why we need a generalized darwinism, and why gener-
alized darwinism is not enough. Journal of Economic Behavior & Organization 61(1),
1–19 (2006)

8. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE 68(9), 1060–1076 (1980)


	Forking the Commons: Developmental Tensions and Evolutionary Patterns in Open Source Software
	Introduction
	Software Evolution vs. Evolution in Software Ecosystems
	The Open Source and Forking Patterns
	A Model of Divergence
	References




